Legend

Plenary lecture in amphi Malraux

and

Lunches and coffee breaks take place in the salon des symboles

Parallel sessions	M or S				
	Room 301	Room 302	Room 303	Room 308	Room 309

Tuesday 16, afternoon

16:30-17:00 Introduction to the conference

17:00-18:00 Joanna Masel — The discrete genetic underpinning of eco-evolutionary dynamics

Inauguration cocktail

(cour sud)

w	ed	nesc	lay	17	٧,	morn	İ

8:45-9:45	Florence Débarre – Evolution of quantitative traits in finite populations						
	Coffee break						
	S1-1 Phylogenies / population genetics	S1-2 Food web evolution	S1-3 Population dynamics	S1-4 Evolutionary community ecology			
	CF Mugal Integration of	C Fritsch A step toward	G M Palamra <i>Inferring</i>	A Daly Individual-based			
10:15-10:35	population genetics	identifying what really	Mechanisms that Drive	modelling of cryptic			
	theory into phylogenet	promotes food webs	Population Dynamics	coexistence			
	T Latrille Fluctuating	V S Ananth Achieving	L Touzot How negatively	G Barabás The evolution			
10:35-10:55	population size in	minimum time pest	temporally	of trait variance creates a			
	phylogenetic codon	eradication by	autocorrelated	tension between			
	Z He An MCMC-based	R Ceulemans <i>Effects of</i>	F Carrara The dynamics of	C Picoche How self-			
10:55-11:15	method for Bayesian	trait variation on	stress generation	regulation, the storage			
	inference of natural	ecosystem function	determine the	effect and their			
	M Pontz The effect of	G Abernethy Space and	A Ching <i>The carrying</i>	T Depraetere Entropy			
11:15-11:35	epistasis on local	migration in an eco-	simplex in non-	production of microbial			
	adaptation with	evolutionary food web	competitive Lotka	communities			
	B Werner <i>Quantifying</i>	C Vitale Demographic and	D Logofet <i>Backward</i>	M Raatz Being			
11:35-11:55	somatic evolution in	evolutionary feedback	prediction in Markov-	indispensable ensures			
	human cancers by	between	chain models	coexistence under			
	R Bürger <i>The effects of</i>		C Coste Using multitrait				
11:55-12:15	epistasis and pleiotropy		population projection				
	on local adaptation		models to analyze				

Lunch

Wednesday :	* + S Roy Structural				
	ensemble of an ocean biogeo				
14:00-15:00					
	M1 Discrete and continuous models	M2 Theory in cultural evolution	M3 Effects of within- host interactions	M4 Niche theory	M5 Plankton dynamics
	F Chalub <i>The</i>	J Yeh <i>Packaged</i>	M T Sofonea Nested	B Vessman	A Rossberg <i>Dome</i>
15:00-15:20	Variational	transmission of	dynamics and	Environmental	patterns in
	Formulation of	cultural traits	parasite evolution	toxins induce	planktonic size
	P Czuppon	L Fogarty <i>The</i>	L Pellis <i>Emergence</i>	S Diehl Patterns of	J Pitchford <i>Diversity,</i>
15:20-15:40	Demographic	mechanics and	of drug resistance in	trait diversity in	dynamics and
	fluctuations and	signatures of	HIV: the role of	evolved	dominance
	A Traulsen	S Gavrilets <i>Evolving</i>	F Bansept Cross-	C Klausmeier <i>Micro</i> -	A Morozov
15:40-16:00	Evolutionary games	institutions for	scale modeling of	bial cross-feeding:	Modelling optimal
	between newly	collective action	resistance spread	well-mixed	behavioural
		Co	offee break		
	C D Soares Diffusion	C Mullon Gene-	E Gjini <i>Coexistence</i>	T Koffel A Niche	A Mitra <i>Why</i>
16:30-16:50	approximation for	culture coevolution	through co-	Theory of Positive	Plankton Modelers
	an age-structured	and cumulative	colonization	Interactions	Should Reconsider
	I Kaj <i>Analysis of</i>	A Powell Generative	C Selinger <i>Multiple</i>	S Lion Niche theory,	A-A Anschütz <i>Niche</i>
16:50-17:10	diversity-dependent	inference for	infection patterns as	time scales and	separation between
	species evolution	cultural evolution	indicators of	environmental	different
				G Meszéna First	J Woodward <i>Physi-</i>
17:10-17:30				principles theory for	cal Flow Effects Can
				ecological niche	Dictate Plankton*

8:45-9:45

J Draghi – Narrow paths to innovation in evolutionary models of stabilizing selection and phenotypic noise

	Coffee break					
	S2-1 Epidemiology 1	S2-2 Evolutionary game theory	S2-3 Evolution in structured populations	S2-4 Evolution of genetic/ physiological architectures		
10:15-10:35	C Jerry Simple cancer model as controlled switched system	T Yakushkina Fitness Optimization in Replicator Systems J Bauer The Stabilisation	structured populations	A Odorico Evolutionary dynamics of plasticity in a mechanistic gene		
10:35-10:55	A Kebir Optimal control model of tumor treatment in the K Heath Climate change	of Equilibria in Evolutionary Game Z Wu Equilibrium	A Neves Exact fixation probabilities and large population asymptotics K Van Benthem Fco-	A Le Rouzic Evolution of genetic canalization in complex genetic N Takeuchi The origin of		
10:55-11:15	and urban expansion increase Ae. aegypti D S Mandal A new	Distributions of Network Structured Populations M Souza From fixation	evolutionary dynamics under multi-scale F Lavigne When sinks be-	the central dogma through conflicting S Bourg The evolution of		
11:15-11:35	perspective on the role of natural enemies in pest R Paton The ecological	probabilities to d-player games: an inverse	come sources: adaptive colonization in asexuals P Pollett Infinite-patch	an allocation trade-off's shape through changes C Coton Evolution of		
11:35-11:55	and epidemiological consequences of	J Peña A sequential teamwork dilemma	metapopulation models: branching	enzyme concentrations in metabolic pathways		
11:55-12:15		M Broom Generalised social dilemmas: the evolution of	F Barraquand Dynamical behaviour of a stage structured predator	M Gonzalez-Forero The evolutionary and develo- pmental dynamics		
Lunch						

Thursday 18, afternoon

Lunch						
	S3-1 Evolution of cooperation and sociality	S3-2 Population genetics	S3-3 Game theory and decision-making	S3-4 Epidemiology 2		
	H Toyoizumi A Markov	C Burny Dilute and Re-	F Dubois Consequences of	M Santer The evolution of		
14:00-14:20	Model of Eusociality at its	sequence: experimental	multiple simultaneous	antibiotic resistance on		
	Origin	validation of putative	discoveries on free riding	multicopy plasmids		
	C Gokhale Origins of	A Desbiez-Piat <i>The</i>	M Kleshnina <i>Learning</i>	S Sandhu <i>Modelling</i>		
14:20-14:40	human beliefs: a catalyst	dynamics of adaptive	advantages in incompe-	Evolution of Virulence in		
	for cooperation	response under strong	tent evolutionary games	Populations with		
	P Avila Sex allocation	M Melissa Traveling-	L Perry Collective Action	R Iritani <i>Evolution of</i>		
14:40-15:00	conflict and sexual	Wave Models of	Problem in	virulence against juvenile		
	selection throughout	Evolution	Heterogeneous Groups	and adult hosts		
	G Henriques Accultura-	J Zhou <i>Modeling higher-</i>	S Dridi <i>Plasticity in</i>	A Deka <i>Individual</i>		
15:00-15:20	tion drives the evolution		actions evolutionary games	vaccination choice and		
	of intergroup conflict	order genetic interdections	evolutionally games	optimal budget		
	C Guerin <i>The Neolithic</i>	D Cheek Mutation	I Dewan Run Away!:	R Donnelly <i>Plant virus</i>		
15:20-15:40	transition to large-scale	frequencies in a birth-	Optimal predator	ecology and evolution:		
	societies is favoured	death branching process	responses to startle	pathogens that modify		
	P Nguyen Functional gain			T Kiszewki <i>Larval</i>		
15:40-16:00	and loss in the			mosquito habitat		
	evolutionary transition			reduction and		
		Coffee break				
16:30-17:30	Steven Frank – Cancer and	d aging: How our bodies are	designed to be reliable and	d why they fail (public)		
		Wine, cheese and p	oosters			

11:15-11:35

11:35-11:55

11:55-12:15

patterns in parasite

populations...

Coalescents with

H J Park Population

demographic...

size changes and

extinction risk

V Miro Pina

universal genetic

S Van Vliet Multi-

level selection and

the evolution of...

Microbial public

goods games in a...

topology in...

S Shibasaki

Friday 19, morning							
8:45-9:45	Thomas Lenormand – Sex chromosome degeneration without selective interference						
	Coffee break						
	M6 Finite popula- tion size effects	M7 Success and sta- bility in bacterial	M8 Mate prefe- rences: impacts	M9 Evolution of multicellular life	M10 Models of Cancer Evolution		
10:15-10:35	G Constable <i>Invasion</i> and extinction	K Gomez Directional selection rather than functional	T Aubier Coevolution of male and female mate	Y Gao Evolution of the irreversible somatic	D Posada Maximum likelihood estima- tion of single-cell		
10:35-10:55	C Overton Capturing the quasi- stationary	survival of microbial communities, taxa	C Taing Selection- mutation models with	Y Pichugin Towards a general theory of reproduction	S Pénisson Stochastic modeling of the sequential		
10:55-11:15	T Parsons Pathogen evolution in stochastic C Pokalyuk Diversity	M Sezik Projections of metabolic supply chain models J McKerral A	C Fitzpatrick Can "good genes" maintain male M Costa Emergence	R Martinez Garcia Eco-evolutionary consequences of G Doulcier	B Roche <i>Darwinian immunotherapy: a new approach</i> C Watson <i>The</i>		

Evolutionary origins

M Staps Emergence

of diverse life cycles

and life histories

F Labourel Diffe-

aggregation...

rentiation without

of Darwinian...

Evolutionary

Dvnamics and...

evolution of...

oncoaenesis

J Townsend Mode-

ling the molecular

S Alizon Modelling

the evolution of viral

of homogamy in a

Y Krumbeck Fitness

suppresses mating...

two-loci

variability

Lunch

Friday 19, afternoon

			Lunch		
	S4-1 Ecosystems dynamics	S4-2 Evolution in va- rying environments	S4-3 Evolutionary community ecology	S4-4 Spatial ecology	M10 Models of Cancer Evolution
	N Zavalishin	H Ten Brink <i>Optimal</i>	S Pettersson	G Somerville	K Stankova
14:00-14:20	Complex Bog Landscape Model A Dragicevic	germination times in unpredictable B Polizzi Mathemati-	Proximity to collapse: mapping K Peterson	Defining biological spread in L Eigentler	Improving Treatment of P Ashcroft Cancer
14:20-14:40	Emergence and Dynamics of Short S Sandhu Exploring	cal analysis for a multi-scale J-S Pierre The	Signatures of coexistence M Besson The way	Metastability as a coexistence V Lecheval Morpho-	evolution in hierarchically M Williams Quanti-
14:40-15:00	the Influence of Phytoplankton	maintenance of polymorphism	species interaction shapes the	genesis of networks in polydomous ants	fying selection in somatic genomes
15:00-15:20					W Huang Tradeoffs in species coevolution and drug